Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
PLoS One ; 17(4): e0267001, 2022.
Article in English | MEDLINE | ID: covidwho-1968855

ABSTRACT

PURPOSE: The ongoing coronavirus disease 2019 (COVID-19) epidemic increasingly threatens the public health security worldwide. We aimed to identify high-risk areas of COVID-19 and understand how socioeconomic factors are associated with the spatial distribution of COVID-19 in China, which may help other countries control the epidemic. METHODS: We analyzed the data of COVID-19 cases from 30 provinces in mainland China (outside of Hubei) from 16 January 2020 to 31 March 2020, considering the data of demographic, economic, health, and transportation factors. Global autocorrelation analysis and Bayesian spatial models were used to present the spatial pattern of COVID-19 and explore the relationship between COVID-19 risk and various factors. RESULTS: Global Moran's I statistics of COVID-19 incidences was 0.31 (P<0.05). The areas with a high risk of COVID-19 were mainly located in the provinces around Hubei and the provinces with a high level of economic development. The relative risk of two socioeconomic factors, the per capita consumption expenditure of households and the proportion of the migrating population from Hubei, were 1.887 [95% confidence interval (CI): 1.469~2.399] and 1.099 (95% CI: 1.053~1.148), respectively. The two factors explained up to 78.2% out of 99.7% of structured spatial variations. CONCLUSION: Our results suggested that COVID-19 risk was positively associated with the level of economic development and population movements. Blocking population movement and reducing local exposures are effective in preventing the local transmission of COVID-19.


Subject(s)
COVID-19 , Bayes Theorem , COVID-19/epidemiology , China/epidemiology , Humans , SARS-CoV-2 , Spatial Analysis
2.
Sci Rep ; 11(1): 8605, 2021 04 21.
Article in English | MEDLINE | ID: covidwho-1196848

ABSTRACT

The WHO has described coronavirus disease 2019 (COVID-19) as a pandemic due to the speed and scale of its transmission. Without effective interventions, the rapidly increasing number of COVID-19 cases would greatly increase the burden of clinical treatments. Identifying the transmission sources and pathways is of vital importance to block transmission and allocate limited public health resources. According to the relationships among cases, we constructed disease transmission network graphs for the COVID-19 epidemic through a visualization technique based on individual reports of epidemiological data. We proposed an analysis strategy of the transmission network with the epidemiological data in Tianjin and Chengdu. The transmission networks showed different transmission characteristics. In Tianjin, an imported case of COVID-19 can produce an average of 2.9 secondary infections and ultimately produce as many as 4 generations of infections, with a maximum of 6 cases being generated before the imported case is identified. In Chengdu, 45 noninformative cases and 24 cases with vague exposure information made accurate information about the transmission network difficult to provide. The proposed analysis framework of visualized transmission networks can trace the transmission source and contacts, assess the current situation of transmission and prevention, and provide evidence for the global response and control of the COVID-19 pandemic.


Subject(s)
COVID-19/transmission , Contact Tracing/methods , Adolescent , Adult , Aged , Aged, 80 and over , Child , China/epidemiology , Female , Humans , Male , Middle Aged , Young Adult
3.
Sci Rep ; 11(1): 717, 2021 01 12.
Article in English | MEDLINE | ID: covidwho-1026831

ABSTRACT

Coronavirus disease-2019 (COVID-19) pandemic has affected millions of people since December 2019. Summarizing the development of COVID-19 and assessing the effects of control measures are very critical to China and other countries. A logistic growth curve model was employed to compare the development of COVID-19 before and after the emergency response took effect. We found that the number of confirmed cases peaked 9-14 days after the first detection of an imported case, but there was a peak lag in the province where the outbreak was concentrated. Results of the growth curves indicated that the fitted cumulative confirmed cases were close to the actual observed cases, and the R2 of all models was above 0.95. The average growth rate decreased by 44.42% nationally and by 32.5% outside Hubei Province. The average growth rate in the 12 high-risk areas decreased by 29.9%. The average growth rate of cumulative confirmed cases decreased by approximately 50% after the emergency response. Areas with frequent population migration have a high risk of outbreak. The emergency response taken by the Chinese government was able to effectively control the COVID-19 outbreak. Our study provides references for other countries and regions to control the COVID-19 outbreak.


Subject(s)
COVID-19/epidemiology , Communicable Disease Control/statistics & numerical data , COVID-19/prevention & control , China , Communicable Disease Control/standards , Emergencies/epidemiology , Humans , Spatio-Temporal Analysis
SELECTION OF CITATIONS
SEARCH DETAIL